Bibliography

See also www.geoclaw.org for papers, posters, and other resources for GeoClaw.

Papers describing the Clawpack software and algorithms

[BaleLevMitRoss02]

D. S. Bale, R. J. LeVeque, S. Mitran, and J. A. Rossmanith. A wave-propagation method for conservation laws with spatially varying flux functions, SIAM J. Sci. Comput 24 (2002), 955-978.

@article{BaleLevMitRoss02,
    Author = {D. Bale and R. J. LeVeque and S. Mitran and J. A. Rossmanith},
    Title = {A wave-propagation method for conservation laws and balance laws
            with spatially varying flux functions},
    Journal = {SIAM J. Sci. Comput.},
    Pages = {955--978},
    Volume = {24},
    Year = {2002}}
[BergerColella89]

M. J. Berger and P Colella. 1989. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84.

[BergerGeorgeLeVequeMandli11]

M. J. Berger, D. L. George, R. J. LeVeque and K. M. Mandli, The GeoClaw software for depth-averaged flows with adaptive refinement, Advances in Water Resources 34 (2011), pp. 1195-1206.

@article{BergerGeorgeLeVequeMandli11,
 Author = {M. J. Berger and D. L. George and R. J. LeVeque and K. T.  Mandli},
 Journal = {Adv. Water Res.},
 Pages = {1195-1206},
 Title = {The {GeoClaw} software for depth-averaged flows with adaptive refinement},
 Volume = {34},
 Year = {2011},
 Url = {\url{www.clawpack.org/links/papers/awr11}}}
[BergerLeVeque98]

M. J. Berger and R. J. LeVeque. 1998. Adaptive Mesh Refinement using Wave-Propagation Algorithms for Hyperbolic Systems. SIAM J. Numer. Anal. 35, 2298–2316.

@article{BergerLeVeque98,
    Author = {M. J. Berger and R. J. LeVeque},
    Journal = {SIAM J. Numer. Anal.},
    Pages = {2298--2316},
    Title = {Adaptive Mesh Refinement using Wave-Propagation Algorithms for Hyperbolic Systems},
    Volume = {35},
    Year = {1998}}
[BergerOliger84]

M. J. Berger and J. Oliger. 1984. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512.

[BergerRigoutsis91]

M. J. Berger and I. Rigoutsos. 1991. An Algorithm for Point Clustering and Grid Generation. IEEE Trans. Sys. Man & Cyber. 21, 1278–1286.

[Davis2018]

B. N. Davis, 2018. Adjoint-Guided Adaptive Mesh Refinement for Hyperbolic Systems of Equations, PhD Thesis, University of Washington. link

[DavisLeVeque2016]

B. N. Davis and R. J. LeVeque. 2016. Adjoint Methods for Guiding Adaptive Mesh Refinement in Tsunami Modeling, 2016. Pure Appl. Geophys. 173 (2016), pp. 4055-4074. More info

[DavisLeVeque2018]

B. N. Davis and R. J. LeVeque. 2018. Analysis and Performance Evaluation of Adjoint-Guided Adaptive Mesh Refinement for Linear Hyperbolic PDEs Using Clawpack, Preprint, More info

[LangsethLeVeque00]

J. O. Langseth and R. J. LeVeque. 2000. A wave-propagation method for three-dimensional hyperbolic conservation laws. J. Comput. Phys. 165, 126–166.

@article{LangsethLeVeque00,
    Author = {J. O. Langseth and R. J. LeVeque},
    Title = {A wave-propagation method for three-dimensional hyperbolic conservation laws},
    Journal = {J. Comput. Phys.},
    Pages = {126--166},
    Volume = {165},
    Year = {2000}}
[LeVeque96]

R. J. LeVeque, 1996. High-resolution conservative algorithms for advection in incompressible flow,

@article{LeVeque1996,
  author="R. J. LeVeque",
  title="High-resolution conservative algorithms for advection in
  incompressible flow",
  journal="SIAM J. Numer. Anal.",
  volume="33",
  year="1996",
  pages="627-665"
}
[LeVeque97]

R. J. LeVeque, 1997. Wave propagation algorithms for multi-dimensional hyperbolic systems. J. Comput. Phys. 131, 327–353.:

@article{rjl:wpalg,
    Author = {R. J. LeVeque},
    Title = {Wave propagation algorithms for multi-dimensional hyperbolic systems},
    Journal = {J. Comput. Phys.},
    Pages = {327--353},
    Volume = {131},
    Year = {1997}}
[LeVeque-FVMHP]

R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, UK, 2002.

@book{LeVeque-FVMHP,
    Author = {R. J. LeVeque},
    Title = {Finite Volume Methods for Hyperbolic Problems},
    Publisher = {Cambridge University Press},
    Year = {2002},
    Url = {http://www.clawpack.org/book.html}}

See gallery_fvmbook for some sample results from this book.

[LeVequeGeorgeBerger]

R. J. LeVeque, D. L. George, and M. J. Berger, 2011, Tsunami modelling with adaptively refined finite volume methods, Acta Numerica, pp. 211-289.

@article{mjb-dg-rjl:actanum2011,
    Author = {R.J. LeVeque  and D. L. George and M. J. Berger},
    Title = {Adaptive Mesh Refinement Techniques for Tsunamis and Other
            Geophysical Flows Over Topography},
    Journal = {Acta Numerica},
    Pages = {211-289},
    Year = {2011}}
[KetParLev13]

D. I. Ketcheson, Matteo Parsani, and R J LeVeque, 2013, High-order Wave Propagation Algorithms for Hyperbolic Systems, SIAM Journal on Scientific Computing, 35(1):A351-A377 (2013)

@article{KetParLev13,
        Author = {Ketcheson, David I. and Parsani, Matteo and LeVeque,
        Randall J.},
        Journal = {SIAM Journal on Scientific Computing},
        Number = {1},
        Pages = {A351--A377},
        Title = {{High-order Wave Propagation Algorithms for Hyperbolic Systems}},
        Volume = {35},
        Year = {2013}}
[KetchesonMandliEtAl]

David I. Ketcheson, Kyle T. Mandli, Aron J. Ahmadia, Amal Alghamdi, Manuel Quezada de Luna, Matteo Parsani, Matthew G. Knepley, and Matthew Emmett, 2012, PyClaw: Accessible, Extensible, Scalable Tools for Wave Propagation Problems, SIAM Journal on Scientific Computing, 34(4):C210-C231

@article{pyclaw-sisc,
    Author = {Ketcheson, David I. and Mandli, Kyle T. and Ahmadia, Aron J. and
        Alghamdi, Amal and {Quezada de Luna}, Manuel and Parsani, Matteo and
        Knepley, Matthew G. and Emmett, Matthew},
    Title = {{PyClaw: Accessible, Extensible, Scalable Tools for Wave Propagation Problems}},
    Journal = {SIAM Journal on Scientific Computing},
    Month = nov,
    Number = {4},
    Pages = {C210--C231},
    Volume = {34},
    Year = {2012}}
[MandliEtAl2016]

Kyle T. Mandli, Aron J. Ahmadia, Marsha Berger, Donna Calhoun, David L. George, Yiannis Hadjimichael, David I. Ketcheson, Grady I. Lemoine, Randall J. LeVeque, Clawpack: building an open source ecosystem for solving hyperbolic PDEs PeerJ Computer Science 2 (2016), e68:

@article{mandli2016clawpack,
  title={Clawpack: building an open source ecosystem for solving hyperbolic PDEs},
  author={Mandli, Kyle T and Ahmadia, Aron J and Berger, Marsha and Calhoun, Donna
    and George, David L and Hadjimichael, Yiannis and Ketcheson, David I
    and Lemoine, Grady I and LeVeque, Randall J},
  journal={PeerJ Computer Science},
  volume={2},
  pages={e68},
  year={2016},
  publisher={PeerJ Inc.},
  doi={10.7717/peerj-cs.68} }

Papers describing applications

[CalHelLeV08]

D. A. Calhoun, C. Helzel, and R. J. LeVeque. Logically Rectangular Grids and Finite Volume Methods for PDEs in Circular and Spherical Domains, SIAM Review 50 (2008), 723-752.

[LeVeque09]

R. J. LeVeque. Python Tools for Reproducible Research on Hyperbolic Problems Computing in Science and Engineering (CiSE) 11(2009), pp. 19-27.

[LeVYon03]

R. J. LeVeque and Darryl H. Yong. Solitary Waves in Layered Nonlinear Media, SIAM J. Appl. Math 63 (2003) pp. 1539-1560.

[Mandli13a]

Mandli, K. T. A Numerical Method for the Two Layer Shallow Water Equations with Dry States. Ocean Modelling 72, 80–91 (2013).

@article{Mandli:2013it,
         author = {Mandli, Kyle T},
         title = {{A Numerical Method for the Two Layer Shallow Water Equations with Dry States}},
         journal = {Ocean Modelling},
         year = {2013},
         volume = {72},
         pages = {80--91},
         month = aug
         }
[Mandli13b]

Mandli, K. T. & Dawson, C. N. Adaptive Mesh Refinement for Storm Surge. Ocean Modelling 75, 36–50 (2014).

@article{Mandli:ws,
         author = {Mandli, Kyle T and Dawson, Clint N},
         title = {{Adaptive Mesh Refinement for Storm Surge}},
         journal = {Ocean Modelling},
         year = {2014},
         volume = {75},
         pages = {36--50}}

Note

Add more…

Other references

[Okada85]

Y. Okada. Surface deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am.* 75 (1985), pp. 1135-1154.